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Many important macroscopic properties of materials depend upon the
number of microscopic degrees of freedom. The task of counting the number
of such degrees of freedom can be computationally very expensive. We de-
scribe a new approach for this calculation which is appropriate for two-
dimensional, glass-like networks, building upon recent work in graph rigidity.
This purely combinatorial algorithm is formulated in terms of a simple pebble
game. It has allowed for the first studies of the rigidity transition in generic
networks, which are models of amorphous materials and glasses. In the context
of generic rigidity percolation, we show how to calculate the number of
internal degrees of freedom, identify all rigid clusters, and locate the overcon-
strained regions. For a network of n sites the pebble game has a worst case
performance of O(n2). In our applications its performance scaled as n1.15 at
the rigidity transition, while away from the transition region it grew
linearly. Q 1997 Academic Press
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1. INTRODUCTION

Many macroscopic properties of a material can be understood from underlying
microscopic structure. For example, microscopic resistance to structural deforma-
tion governs material strength. Microscopic rigidity has been widely studied in
covalent glass networks by modeling bond lengths and angles as hard constraints.
Angular constraints are modeled as next nearest neighbor bond constraints, and
therefore no special distinction needs to be made. Using this model the rigidity of
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network glasses is well characterized by the number of floppy modes [24] which can
be estimated by constraint counting. Mean field approximations for the properties of
linear elasticity in network glasses [5] have also been successful in characterizing
material strength. However, current understanding of the mechanical stability in
such materials is limited and further theoretical development is needed. Fundamen-
tal questions remain unresolved like the nature of the rigidity transition from a
floppy to a rigid network.

The study of network rigidity and the rigidity transition is known as rigidity
percolation [4, 8] due to its close connections to connectivity percolation theory
[21]. The essential property common to all percolation type problems is that of a
connected pathway. Some property of interest, such as fluid flow, can be traced
along paths within a network. In rigidity percolation the paths consist of sites
that are mutually rigid. There are two important differences between rigidity and
connectivity (e.g., fluid flow) percolation. Rigidity percolation is a vector (not a
scalar) problem, and unlike connectivity, rigidity is inherently nonlocal. That is,
whether a region is floppy or rigid generally depends upon structural details that are
far away. These properties significantly complicate the study of rigidity percolation.
Although brute force numerical techniques have been applied with great vigor
[1, 2, 9, 20], their O(n3) run time for a network with n sites has severely constrained
system sizes.

In this paper we describe a new algorithm for exploring rigidity percolation which
combines insights from graph rigidity and material science [12]. Graph rigidity is
concerned with the rigidity properties of structures composed of rigid bars joined
via revolute joints, and has been well studied by mathematicians and engineers.

The results in graph rigidity are most complete for networks without any geomet-
ric singularities or symmetries. Conveniently, amorphous solids and polymeric
glasses generally fit this description. For this class of problems, rigidity properties
can be reduced to questions of connectivity, without worrying about geometric
details. Thus, unlike many other aspects of physics, rigidity is simplified in networks
which lack any regularity.

Algorithms for graph rigidity are most highly developed for two-dimensional
systems, so that is the focus of this paper. The basic understanding of the rigidity
transition for two-dimensional networks has been eluding researchers for many
years due to the prohibitive cost of simulating large networks. This paper describes
the techniques that have enabled the first detailed studies of rigidity percolation
[12, 13]. Moukarzel [17] and Moukarzel and Duxbury [18] have used an approach
closely related to ours in simultaneous and independent work with a different em-
phasis.

In Section 2, we review some fundamentals of rigidity theory and we recast the
rigidity algorithm proposed by Hendrickson [10] in terms of a simple pebble game.
Discussion of our implementation is given in Section 3 where the powerful method
of triangularization is included which significantly improves the performance. We
also discuss how to count the number of floppy modes, decompose the network
into rigid clusters, and locate the overconstrained regions. In Section 4 we demon-
strate the pebble game as a tool for studying rigidity percolation in two-dimensional
generic networks. In Section 5 a brief summary and future outlook is given.
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2. GRAPH RIGIDITY AND THE PEBBLE GAME

The structure of a network glass can be described as a graph G consisting of a
set of vertices V, numbered from 1 to n, and a set of m edges E each of which
connects a pair of vertices. The vertices correspond to sites and edges to bonds.
We will say an edge is incident to vertex i if the edge connects i to some other
vertex j, and we will denote such an edge by (i, j). The subgraph induced by a set
of vertices is the graph consisting of those vertices and all edges that are only
incident to those vertices. A framework p(G) is a graph G along with a mapping
p: V R R2 which assigns each vertex to a point in the plane. We are interested in
whether or not a framework can be flexed while keeping all the edge lengths un-
changed.

To formalize our notion of a glass-like structure, we will assume that the locations
of the vertices are generic; that is, the vertex coordinates are algebraically indepen-
dent over the rationals. This requirement is actually stronger than we need; we just
have to avoid several specific algebraic dependencies. The set of generic realizations
is dense in the space of all realizations, and almost all realizations are generic.
Therefore the key advantage in considering network glasses, unlike regular lattices,
is that their rigidity properties are easier to analyze because all problematic configu-
rations are eliminated.

2.1. Basic Concepts

A mathematical analysis of rigidity requires a formal definition of the intuitive
notion of a flexible framework. We will limit our development to two dimensions,
although the basic definitions are easily generalized.

A finite flexing of a framework p(G) is a family of realizations of G, parameterized
by t so that the location, ri , of each vertex i, is a differentiable function of t and
uri(t) 2 rj(t)u2 5 constant for every (i, j) [ E. Thinking of t as time, and differentiating
the edge length constraints we find that

(ui 2 uj) · (ri 2 rj) 5 0 for every (i, j) [ E, (1)

where ui is the instantaneous velocity of vertex i. An assignment of velocities
that satisfies Eq. (1) for a particular framework is an infinitesimal motion of that
framework. Clearly the existence of a finite flexing implies an infinitesimal motion,
but the converse is not always true. However, each infinitesimal motion corresponds
to a finite flexing [19] in a generic realization, and this simplification is actualized
in network glasses.

The infinitesimal motions of a framework constitute a vector space. Note that a
motion of the Euclidean space itself, a rotation or translation, satisfies the definition
of a finite flexing. Such finite flexings are said to be trivial. In two dimensions there
are three such macroscopic trivial flexings, two translations and a rotation. If a
framework has a nontrivial infinitesimal motion it is infinitesimally flexible. Other-
wise it is infinitesimally rigid. Since we are considering only generic realizations we
will drop the prefix and refer to frameworks as either rigid or flexible.
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Our first task is to be able to determine whether a particular framework is rigid
or flexible. Conveniently, this now becomes a property of the underlying graph as
the following theorem indicates [7].

THEOREM 2.1. If a graph has a single infinitesimally rigid realization, then all its
generic realizations are rigid.

The frameworks built from a graph are either all infinitesimally flexible or almost
all rigid. This allows for the characterization of graphs as either rigid or flexible
according to the typical behavior of a framework, without reference to a specific
realization. It also allows us to be somewhat cavalier in the distinction between
rigid frameworks and graphs that have rigid realizations. Henceforth such graphs
will be referred to as rigid graphs.

How can a rigid graph be recognized? Clearly, graphs with many edges are more
likely to be rigid than those with only a few, since the edges are constraining the
possible movements of the vertices. In two dimensions a set of n vertices has 2n
possible independent motions, but the three rigid body motions cannot be con-
strained. If each edge adds an independent constraint, then 2n 2 3 edges should
be required to eliminate all nonrigid motions of the graph. Clearly, if any induced
subgraph with n9 vertices has more than 2n9 2 3 edges then these edges cannot
be independent. This basic intuition is sound as the following result of Laman
indicates [15].

THEOREM 2.2 (Laman). The edges of a graph G 5 (V, E) are independent in
two dimensions if and only if no subgraph G9 5 (V9, E9) has more than 2n9 2 3 edges.

COROLLARY 2.3. A graph with 2n 2 3 edges is rigid in two dimensions if and
only if no subgraph G9 has more than 2n9 2 3 edges.

Laman’s result was the first graph theoretic characterization of rigid graphs in
two dimensions. Several equivalent characterizations have since been discovered
[3, 11, 16, 22, 23]. We will refer to a subgraph with n9 vertices and 2n9 2 3 independent
edges as a Laman subgraph.

Unfortunately, for all its intuitive appeal the obvious generalization of Laman’s
theorem is not sufficient in higher dimensions (although it is a necessary condition
for rigidity). The characterization of generically rigid graphs in three dimensions
remains an open problem.

2.2. The Pebble Game

Although Laman’s theorem characterizes rigidity, as stated it gives a poor algo-
rithm. It requires counting the edges in every subgraph, of which there are an
exponential number. Sugihara discovered the first polynomial time algorithm for
determining the independence of a set of edges in two dimensions [22]. Imai pre-
sented an O(n2) algorithm for rigidity testing using a network flow approach [11].
This complexity was matched by Gabow and Westermann using matroid sums [6]
and again by Hendrickson using bipartite matching [10]. In this section we reinter-
pret and simplify Hendrickson’s algorithm to make it practical.

We will make extensive use of the following formulation of Laman’s theorem.
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THEOREM 2.4. For a graph G 5 (V, E) having m edges and n vertices, the
following are equivalent.

A. The edges of G are independent in two dimensions.

B. For each edge (a, b) in G, the graph formed by adding three additional edges
(a, b) has no induced subgraph G9 in which m9 . 2n9.

The basic idea behind our algorithm is to grow a maximal set of independent
edges one at a time. Denote these basis edges by Ê. A new edge is added to the
basis if it is discovered to be independent of the existing set. If 2n 2 3 independent
edges are found then the graph is rigid. The key will be the efficient determination
of whether or not a new edge is independent of the current basis.

Assume that we have a (possibly empty) set of independent edges Ê . Combined
with the vertices of G these form a graph Ĝ . Note that the number of edges in
Ĝ is O(n). We wish to determine if another edge, e, is independent of Ê . Adding
e to Ĝ produces G. By Theorem 2.4, e is independent of Ê if and only if there is
no subgraph with too many edges (m9 . 2n9) after any edge in G is quadrupled
(i.e., adding three additional edges between the same pair of vertices). Actually,
only e needs to be quadrupled as the following lemma demonstrates.

LEMMA 2.5. A new edge e is independent of Ê if and only if the graph G4e formed
by quadrupling e has no induced subgraph G9 in which m9 . 2n9.

Proof. The ‘‘only if ’’ portion of the proof follows immediately from Theorem
2.4. For the ‘‘if ’’ portion assume that no subgraph of G4e has too many edges when
e is quadrupled, but e is not independent of Ê . Then by Theorem 2.4 there must
exist some edge in Ê whose quadrupling causes G9, a subgraph of G, to have
m9 . 2n9. Since the edges of Ê are independent this bad subgraph must include e.
But this bad subgraph has the same number of edges it had within G4e , which leads
to a contradiction.

Lemma 2.5 reduces the complexity of independence testing to that of counting
edges in subgraphs once the new edge is quadrupled. To do this we will make use
of the following pebble game. Each vertex is given two pebbles. A vertex can use
its pebbles to cover any two edges which are incident to that vertex. We would
like to assign the pebbles in such a way that all the edges in the graph are covered.
We will call such an assignment a pebble covering. We will show below that the
existence of a pebble covering is equivalent to there being no induced subgraph
on n9 vertices with more than 2n9 edges, which is the independence condition in
Lemma 2.5. Before we can prove this, we need to describe an approach for moving
pebbles around to cover a new edge.

Assume that we have a set of edges that are covered with pebbles. We now want
to add a new edge, rearranging pebbles as necessary to cover it. First look at the
vertices incident to the new edge. If either vertex has a free pebble, then use it to
cover the new edge and exit. Otherwise, their pebbles are being used to cover
existing edges. If a vertex at the other end of one of these edges has a free pebble
then that pebble can be used to cover the existing edge, freeing up a pebble which
can cover the new edge. More formally, we are searching for free pebbles in a
directed graph, in which each edge has a preferred direction. Specifically, if edge
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eab is covered by a pebble from vertex a, then the edge is directed from a to b.
From each vertex v, we search along the (at most two) edges directed away from
v. This search for free pebbles continues until either a pebble is found and a
sequence of swaps allows a new edge to be covered, or else no more vertices can
be reached and no free pebbles have been discovered. The algorithm is sketched
in Fig. 1.

Several observations about this algorithm are in order. First, the time to perform
an enlargement is linear in the number of vertices. All the initialization is linear,
and the recursive calls to Find_Pebble perform a depth first search in the graph

FIG. 1. Algorithm for enlarging a pebble covering.
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of covered edges, which has at most 2n edges. Second, since the search implicit in
Find_Pebble is just a search for free pebbles within a directed graph, the order
of the search does not affect whether or not a pebble is found. In our implementation
we use a breadth first search instead of the depth first search implicit in the recursion.
Third, by applying Enlarge_Cover four times, once for each copy of the quadru-
pled edge, we can determine whether a pebble covering exists for G4e .

Fourth, if Enlarge_Cover fails then all the pebbles owned by the vertices
encountered in the search are already covering bonds. If n9 vertices were encoun-
tered, then they must have at least 2n9 induced edges to consume all their pebbles.
This observation allows us to prove that pebble coverings are equivalent to edge
independence, but we first need the following two lemmas.

LEMMA 2.6. If the new edge, e, is tripled instead of quadrupled to form G3e , then
G3e has a pebble covering.

Proof. Assume the contrary. Then there is some induced subgraph G9 of G3e

with m9 . 2n9. Remove the three copies of e from this subgraph and quadruple
one of the other edges already present. This altered subgraph still has m9 . 2n9,
but it is the graph generated by quadrupling an edge in Ĝ . But since the edges of
Ĝ are assumed to be independent this is a contradiction.

LEMMA 2.7. If G4e , the graph constructed by quadrupling e, does not have a
pebble covering, then the set of vertices n9 encountered in Find_Pebble already
have 2n9 2 3 induced edges.

Proof. By Lemma 2.6 when e is quadrupled the first three copies of it can be
covered. Since all the pebbles among the n9 vertices are now in use, 2n9 # m9 1

3. Since the m9 edges are independent, we must have equality.

In other words, when our algorithm determines that a new edge is not indepen-
dent, it identifies a subgraph on n9 vertices which already contains 2n9 2 3 edges.
Otherwise, the algorithm will successfully enlarge the covering. This leads to the
following theorem.

THEOREM 2.8. A new edge e is independent of Ê if and only if there exists a
pebble covering when e is quadrupled.

Proof. Assume that a pebble covering exists. No subgraph on n9 vertices can
have more than 2n9 induced edges since this is the total number of pebbles available
to those vertices. When combined with Lemma 2.5, this completes the ‘‘if ’’ portion
of the proof.

For the ‘‘only if ’’ proof, assume that e is independent, but no pebble covering
exists. Algorithm Enlarge_Cover will either enlarge a covering or identify a
subgraph on n9 vertices with more than 2n9 edges. If no such subgraph exists, the
algorithm will find a pebble covering.

COROLLARY 2.9. If Ê is independent and a corresponding pebble covering Ĝ is
known, then determining whether a new edge is independent requires O(n) time.

Proof. By Lemma 2.5, testing for independence of e requires just enlarging the
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covering in Ĝ to include the four copies of e. This requires four invocations of the
Enlarge_Cover algorithm.

This gives a two-dimensional rigidity testing algorithm that runs in worst case
time O(nm). Build a maximal set of independent edges one at a time by testing
each edge for independence. Each test involves the enlargement of a pebble covering
requiring O(n) time. If the covering succeeds the edge is independent and is added
to the basis. Otherwise it is discarded.

3. IMPLEMENTATION

A nice feature about the pebble game is that it directly corresponds to a physical
picture. A free pebble at a site represents one independent motion. A site with
two free pebbles has two translational motions. If two additional free pebbles are
found at another site, then the distance between this pair of sites is not fixed. A
bond placed between these sites is an independent constraint since the distance of
separation is set to the bond length. Covering this bond with one of the four free
pebbles marks it as an independent constraint. Once a bond is covered it must
remain covered as pebbles are rearranged. The constraints in the movement of
pebbles gives the property that a rigid cluster of two or more sites cannot have
more than three free pebbles. The three free pebbles physically correspond to
the three degrees of freedom required to specify the position of a rigid body in
two dimensions.

We are interested in using the pebble game as a tool to study generic percolation
and more generally the mechanical stability of network glasses. We wish to decom-
pose a network into its rigid clusters. A site shared by more than one rigid cluster
acts as a revolute joint or pivot. Many rigid clusters can be connected together in
a network through pivots forming floppy regions that are governed by collective
motions. The number of floppy modes [12, 24] is given by F 5 2n 2 (m 2 mr),
where n is the number of sites, m is the number of bonds, and mr is the number
of redundant bonds. The number of redundant bonds within a network is unique
but their location is not unique because this depends on the choice of bonds used
as an independent basis. Each redundant bond creates an overconstrained region.
These regions may overlap depending on the distribution of redundant bonds.

There are three basic questions about the rigidity of a network that one can
address. (1) How many independent degrees of freedom exist in the system? (2)
Which set of sites form rigid clusters? (3) Where are the overconstrained regions?
In Fig. 2 we show an example of a two-dimensional generic bar-joint network
that has been analyzed using the pebble game. The rigid clusters, pivots, and
overconstrained regions can be verified by inspection. We will work with this exam-
ple to explain the implementation of the pebble game and how the above questions
are answered.

3.1. The Pebble Search

The network connectivity is stored in a standard neighbor table which is used
for building the network and in part for identifying rigid clusters as discussed below.
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FIG. 2. A genetic network. Shaded regions highlight rigid clusters with more than one bond. The
filled circles denote sites that are a member of only one cluster. Open circles denote pivots. Thick solid
and dashed lines denote overconstrained bonds. A dashed line indicates a redundant bond.

Information about the network rigidity is efficiently stored in a pebble index which
is a neighbor table with two columns defining the state of the two pebbles associated
with each site. Either the pebble is free or it covers a bond connecting to the site
that the pebble index points to. Uncovered bonds play no role. The pebble index is
well suited to facilitate the frequently required pebble searches and rearrangements
made by Find_Pebble and Rearrange_Pebbles, respectively.

Every site is initially assigned two free pebbles, and then bonds are added one
at a time. The particular order of bond placement is arbitrary. Enlarge_Cover
is used to test if a bond is independent or redundant. A bond is independent if two
free pebbles can be collected at both incident sites simultaneously. The directed
graph is automatically updated to cover an independent bond. We show in Fig. 3
our example network after placing the bottom row of bonds.

The pebble covering can be illustrated by assigning a direction to each covered
bond. The bond (edge) is directed away from the site whose pebble covers it. A
portion of such a directed graph is shown in Fig. 4 which corresponds to part of
our example network in a late stage of analysis. Here we are interested in freeing
up the two pebbles assigned to the bottom-left corner site. The outward search for
a free pebble is easily accomplished using Find_Pebble by branching outward
into unchecked territory guided by the directed graph. As soon as a free pebble is
found, it is successively swapped using Rearrange_Pebbles along the backward
trail. As the pebbles are rearranged, the new directed graph is automatically re-
corded within the pebble index. In general, Find_Pebble and Rearrange_
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FIG. 3. Small filled circles denote sites. Large (filled, open) circles denote (covering, free) pebbles.

FIG. 4. A portion of a directed graph as determined by the pebble covering. The (filled, open)
circles denote (covering, free) pebbles. A pebble search follows along the arrows. Each site is labeled
by the minimum search length from the starting site. For example, the site with number 0 is the starting
site and the number 3 on a site indicates that it can be reached in three steps. (a) A breath first search
for a free pebble. (b) After a pebble rearrangement, a second pebble search is made.
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FIG. 5. A failed search (highlighted) across a test bond leads to a set of closed paths as indicated
by the arrows. Dashed lines denote uncovered redundant bonds.

Pebbles become slower as the pebble searches lengthen, which happens when
rigid regions become larger and the number of floppy modes diminishes. The run
time can be significantly improved by reducing the average search length as de-
scribed in the next section.

3.2. Redundant Bonds and Laman Subgraphs

A bond placed between a pair of sites is redundant when two free pebbles cannot
be obtained at each incident site. A failed search for the forth pebble leads to a
set of closed loops back to the two incident sites. The set of sites visited in the
failed search constitutes a Laman subgraph. An example of finding a redundant
bond and its associated Laman subgraph is shown in Fig. 5. All bonds which
connect pairs of sites belonging to the Laman subgraph are overconstrained. This
information must be explicitly recorded when it is of interest because it is completely
lost once the next pebble search is made.

Without any cost in memory, a substantial efficiency improvement is made by
implicitly recording Laman subgraphs within the directed graph. The idea is to
change the connectivity of the pebble index immediately after a failed pebble search
in order to reduce the average length of future searches. A Laman subgraph consists
of n9 mutually rigid sites with 2n9 2 3 independent bonds. Generally there are
many ways to distribute these bonds to maintain rigidity. Since only independent
bonds are relevant to the pebble index, the topology of a Laman subgraph can be
transformed to a set of edge-sharing triangles. This effectively reduces an arbitrarily
large Laman subgraph to the size of two edge-sharing triangles, dramatically shorten-
ing subsequent pebble searches.
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FIG. 6. (a) A Laman subgraph as a self-contained directed graph. (b) Triangularization transforms
its topology into a set of triangles sharing a common base.

To implement this transformation notice that a failed pebble search identifies a
self-contained directed graph that can be lifted from the network. In Fig. 6 we show
how the Laman subgraph of Fig. 5 is transformed using a triangularization procedure.

1. Start at the redundant bond having three free pebbles. Label the incident
site with two free pebbles as a and the incident site with one free pebble as b and
define site c as the first site searched from b.

2. Place two free pebbles on site c. The covered bond directed from site b to
site c defines a common base.

3. All remaining sites in the Laman subgraph, including site a, are triangulated
to the common base, bc, as Fig. 6 demonstrates. Note that bond ab could have
been used as a common base; however, the pebble currently covering bond bc must
instead be used to cover bond ba.

Moukarzel [17] describes an alternative method in exploiting the discovery of
Laman subgraphs. Although these techniques improve the practical behavior of
algorithms, they do not reduce the worst case run time below O(n2).

3.3. Identifying Rigid Clusters

After placing the last bond in the network, it is decomposed into rigid clusters.
Since a bond can only belong to one rigid cluster, each bond is assigned a unique
cluster label. A set of bonds having the same label defines a rigid cluster. A site is
identified as a pivot when it belongs to two or more rigid clusters. A streamlined
method for identifying the rigid clusters uses Find_Pebble and
Rearrange_Pebbles as basic tools.

Isolated sites are identified first as rigid clusters. To identify the remaining clusters:

1. Introduce a new cluster label for an unlabeled bond.

2. Gather three pebbles at its two incident sites.

3. Temporarily pin the three free pebbles down and mark the two incident sites
as rigid.
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4. Using the network neighbor table, check the unmarked nearest neighbors to
the set of rigid sites. For each new unmarked site, perform a pebble search and
attempt to free a pebble.

5. If a free pebble is found, the site is not mutually rigid with respect to the
initial bond nor is any other site that was encountered during a pebble re-
arrangement. Mark all these sites floppy.

6. If a free pebble is not found, the site is mutually rigid with respect to the
initial bond as well as all other sites that make up the failed search. Mark these
sites as rigid and include them in the set of rigid sites.

7. Return to Step 4 until all nearest neighbors to the set of rigid sites have been
marked floppy.

8. All bonds between pairs of sites marked rigid are given the same cluster label.

9. Remove floppy and rigid marks from all sites. Return to Step 1 until no
unlabeled bonds remain.

The identification of rigid clusters using the above method is very efficient when
previously marked sites, either as floppy or rigid, are used within Find_Pebble.
The branching that occurs during a search for a free pebble is terminated at sites
marked rigid. If a site is encountered that has been marked floppy, then it is
immediately known that a free pebble can be extracted. Therefore, new sites can
be identified as being mutually rigid or floppy with respect to the initial bond
without reanalyzing any part of the network.

In general a rigid cluster will contain two types of bonds. Isostatic bonds are
those essential to maintaining the rigidity of the structure—no redundant bond can
replace them. Overconstrained regions are composed of a set of bonds, such that
any one can be removed without changing the overall rigidity, because a redundant
bond will take its place. Recall that these overconstrained regions are identified
from failed pebble searches, and only these regions can carry stress [18]. However,
both the overconstrained and the isostatic regions are found when identifying rigid
clusters because the neighbor table of the network is used to facilitate a com-
plete search.

3.4. Boundary Conditions and Spanning Clusters

One question we would like to answer about a network is whether or not there
is a spanning rigid cluster. If so, the network will make a transition from being
rigid to floppy as constraints are randomly removed. An example of this type of
application is given in Section 4 for a generic triangular network. The particular
boundary conditions will affect the likelihood of finding a spanning cluster. It is
worth mentioning three common types of boundary conditions.

The simplest implementation is free boundary conditions where the network
connectivity is truncated at the edges. The abrupt discontinuity tends to make the
edges more floppy than within the bulk of the network. To avoid these surface
effects, periodic boundary conditions are frequently used. By wrapping the network
back on to itself the connectivity looks similar everywhere. (Actually, this so-called
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‘‘periodic’’ boundary condition corresponds to a network having long-range bonds
connecting its opposite edges.)

Another useful boundary condition is to apply rigid bus bars on two opposite
sides of a network. The sites along an edge are made to be mutually rigid by
triangulating each site to a common base. Either free or periodic boundary condi-
tions can be applied to the other two edges sandwiched between the two bus bars.
A useful application is to find the stressed backbone when the bus bars are loaded
[17, 18]. This is implemented by applying a test bond between the top and bottom
bus bar. When the test bond is found to be redundant the network can support
the loading.

Testing for spanning rigid clusters is relatively simple. A spanning cluster is a
collection of sites that are mutually rigid that form a connected path from one side
of the network to the other side. It can be defined along certain directions, such
as only along the horizontal or vertical direction, or one may wish to require a
spanning rigid cluster to span both horizontal and vertical directions. With free
boundaries, a cluster is spanning provided that it contains sites on opposite edges
of the network. With horizontal rigid bus bars, a vertical spanning cluster forms
when the two bus bars become mutually rigid. With periodic boundary conditions,
a rigid path through the network must be found while making sure that the connect-
ing path totally wraps around in the direction of interest. The vertical and horizontal
directions must be checked separately even if spanning is required in both directions.

4. APPLICATION TO RIGIDITY PERCOLATION

The utility of the pebble game is nicely demonstrated in the context of generic
rigidity percolation. We will focus on the pebble game rather than the results of
rigidity percolation which are published elsewhere [12, 13, 18]. As a typical example,
we consider an L 3 L generic triangular network. It has the connectivity of a
triangular lattice but the site locations are distorted as to define a generic network.
The degree of rigidity within the network is controlled by randomly removing either
bonds or sites. The pebble game is then used as a tool to study the mechanical
stability in these networks. All our simulations were performed on a DEC Alpha
workstation.

For bond dilution all n 5 L2 sites are present in the network and m 5 p3L2

bonds are randomly placed throughout, where p is the bond concentration which
ranges from 0 # p # 1. For site dilution (1 2 q)L2 sites are randomly removed
from the network leaving n 5 qL2 sites present, where the site concentration q
varies from 0 # q # 1. Bonds are placed between all neighboring sites. The number
of bonds in the network will vary, but the expected number is kml 5 q23L2.

At full concentration (when all sites/bonds are present) the generic triangular
network is rigid and overconstrained. The network becomes floppy when it is
sufficiently diluted. A transition from a rigid to floppy network defines the rigidity
percolation threshold. This threshold can be found for a given network by monitor-
ing when a spanning rigid cluster first appears as the bond or site concentration is
increased. Operationally this is done by adding one bond to the network at a time.
Using the approach detailed in this paper, we have found the percolation thresholds
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FIG. 7. The topology of a section of a site-diluted generic triangular network below the percolation
threshold (q 5 0.6825). Any particular realization will have distortions (not shown). The thin (thick)
lines denote isostatic (overconstrained) bonds. The open circles denote pivot sites.

(extrapolated to infinite systems) for bond and site dilution to be pcen 5 0.6602 6

0.0003 and qcen 5 0.6976 6 0.0003, respectively [13].
We show two typical sections of a site-diluted network below and above the

rigidity percolation threshold in Figs. 7 and 8, respectively. We have decomposed
these networks into their rigid clusters. From the cluster statistics one can study
rigidity percolation in a similar way as is done for connectivity percolation [21].
The pebble game serves as a tool for identifying rigid clusters, pivot sites, and
overconstrained regions as demonstrated in Figs. 7 and 8. Although the overcon-
strained regions stand out the most in this diagram, they often make up only part
of a rigid cluster. Many rigid clusters or regions within them are isostatic. As the
site concentration is increased, various clusters merge and the overconstrained
regions expand. Note that stress resides only within these overconstrained regions.
The spanning overconstrained region of the network is called the stress carrying
backbone. Locating this backbone allows one to substantially reduce the calcula-
tional time using relaxation type methods to find elastic constants [17, 18].
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FIG. 8. Same as Fig. 7 except q 5 0.7125 above the percolation threshold.

The number of floppy modes is a global quantity that tracks the degree of rigidity
within the network. The number of floppy modes F can be expressed as

F 5 2n 2 On
s52

Cs (2s 2 3), (2)

where Cs is the number of rigid clusters having s sites. This sum rule simply follows
from counting (2s 2 3) independent bonds per cluster containing s sites. The first and
second derivatives of F with respect to bond or site concentration show interesting
behavior at the percolation threshold [12, 13, 24]. The first derivative is related to
the change in F when one bond or site is added to the network. The second derivative
is related to the change in F when a pair of bonds or sites is added to the network.
The first and second derivatives can be calculated exactly for any given network
by considering all possible ways to add either one bond (or site) or a pair of bonds
(or sites), respectively. However, it is sufficient to sample only a small fraction of
these possibilities to obtain accurate results. Note that triangularization cannot be
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implemented while performing this sampling because the pebble index must be
restored after each test is completed.

In bond-diluted networks the first derivative of the fraction of floppy modes,
given by f 5 F/2n, can be calculated exactly by knowing the total number of
overconstrained bonds, m0 , as

d
dp

f (p) 5 2
z
4 S1 2

m0

mD, (3)

where z is the full coordination number of the network. This result follows by
considering all possible outcomes in the change of F with the removal of one bond.
The removal of an overconstrained bond does not change F, while the removal of
an isostatic bond increases F by one mode. This result also makes calculating the
second derivative easier because one need only consider the change in the number
of overconstrained bonds due to the addition of a single bond. There is no similar
shortcut for site-diluted networks. Removing a single site generally corresponds to
removing more than one bond locally, which influences the network in a corre-
lated way.

The performance of the pebble game applied to bond- and site-diluted networks
is shown in Fig. 9 over an entire concentration range. In both the bond- and the
site-diluted networks we count the number of floppy modes, calculate its first
derivative, locate all overconstrained regions, decompose the network into rigid
clusters, and check for a spanning rigid cluster and a stress carrying backbone. In
bond-diluted networks the second derivative of F is also calculated which requires
about the same fraction of time to calculate the first derivative of F for site dilution.

FIG. 9. The performance of the pebble game when analyzing rigidity percolation on a 128 3 128
generic triangular network. The dashed line includes a full calculation for the second derivative of F
for site dilution.
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This is about 5% of the total CPU time plotted in Fig. 9. The time to calculate the
second derivative of F is large for site-diluted networks; therefore it is obtained by
numerically differentiating the first derivative. However, in Fig. 9 we show the
performance when the second derivative of F is also calculated by the method of
sampling the change in F with a random placement of pairs of sites.

It is seen that the total CPU time increases near the rigidity percolation threshold.
This occurs because the average length of a pebble search is becoming very long.
This is a reflection that there are many large nonspanning interconnected isostatic
regions. Below the threshold, pebble searches are shorter because there are more
floppy modes and the isostatic regions are smaller. Above the threshold many large
overconstrained regions appear, so that by triangularization the typical length
of a pebble search shortens. These general effects are the same for both bond and
site dilution; however, in the latter case the peak near the threshold is not as
pronounced because the effective size of the network is increasing as the site
concentration is increased. Also the cost in calculating the second derivative of F
in site-diluted networks is too expensive to be practical.

The overall time dependence on network size is shown in Fig. 10 where we
compare bond- and site-diluted networks at their respective critical thresholds and
also near full concentration. Near the rigidity transition we find a time dependence
that scales as O(n1.15), with site-diluted networks performing better because their
effective size is smaller. As expected, near full concentration we find virtually no
difference between bond and site dilution, and surprisingly the time dependence
on network size is nearly linear. Without triangularization this time dependence
scales as O(n2). Although not shown, a linear dependence is also found below the
threshold. The general shape of the curves in Fig. 9 will be the same for all network
sizes, except the peaks near the percolation threshold will become more pronounced
since in this concentration range the CPU time grows somewhat faster than linearly.

FIG. 10. CPU time for the pebble game as a function of network size. The number of sites is taken
as n 5 L2, although in site dilution only the fraction q of the sites are present. A comparison is made
at their respective thresholds and near full concentration.
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5. CONCLUSIONS

A major advance in our fundamental understanding of the mechanical stability
of glass-like materials has been made by bridging the concepts of graph rigidity
with material science. Namely, we see that numerous glass-like materials are well
modeled as a simple bar-joint structure which is generic in nature. Only the topology
of the network becomes important in this setting. The surprise is that networks
lacking any underlying symmetry are easier to deal with mathematically.

We have presented an algorithm, manifested as a pebble game, that is sufficiently
powerful to determine useful information about the rigidity of very large, generic
networks in two dimensions. We have shown how the pebble game can be imple-
mented to count the number of floppy modes, locate overconstrained regions, and
identify all rigid clusters. For bond- and site-diluted generic triangular networks,
we find that the pebble game has an O(n1.15) time dependence near the rigidity
transition, where n is the number of sites in the network. This algorithm can be
used as a precursor to relaxation type methods in calculating quantities such as
elastic constants or internal strain energies.

The success of the pebble game for two-dimensional generic networks is already
stimulating research in rigidity percolation as well as other related problems dealing
with mechanical stability in two dimensions. Hopefully, it will also provide new
impetus toward a combinatorial characterization of rigidity in three-dimensional
generic networks. Substantial progress has already been made in this direction [14]
by generalizing the pebble game algorithm described here to three-dimensional
bond-bending networks.
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